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Credits for this picture: http://kayarvizhy.com/
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Credits for the picture: http://fortune.com/
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1940s

Perceptron

1980

Neocognitron
Fukushima

Convolutional Neural Network - Hierarchical multilayered neural network capable of 
robust visual pattern recognition through learning (inspired by the visual cortex) 

1998

ConvNets
LeCun

The Rise of Deep Learning and AI in CPS

Deep Learning

Hinton &

Salakhutdinov

2006

https://de.mathworks.com/discovery/convolutional-neural-network.html
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AlphaGo
NVDIA PilotNet

Tesla Autopilot 8.0

https://blogs.nvidia.com/blog/2017/04/27/how-nvidias-neural-net-makes-decisions/
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Are we safer  ?

https://www.cnbc.com/2016/08/05/man-says-
tesla-autopilot-saved-his-life-by-driving-him-to-
the-hospital.html

Europe: 1 fatal crash every 60 Millions of miles

US: 1 fatal crash every 100 Millions of miles

Tesla Autopilot: 
1 fatal crash after 130 Millions of miles
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Can we fully trust ?

Misclassification can still happens
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Robustness of classifiers to perturbations

http://www.srl.ethz.ch/riai2017/Explaining%20and%20Harnessing%20Adversarial%20Examples.pdf

Real-world images undergo perturbations 
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Deep Neural Networks can be fooled 
https://arxiv.org/pdf/1610.08401.pdf

• Adversarial perturbations [Szegedy et al. 
ICLR 2014], [Biggio et al. 2013]

• Random noise [Szegedy at al. 2014]

• Existence of a universal (image-agnostic) 
adversarial perturbation [Moosavi-
Dezfooli et al. 2017]
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Car Hacking

http://www.telegraph.co.uk/technology/2017/08/07/graffiti-road-signs-could-trick-driverless-cars-driving-dangerously/
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Car Hacking

“…Researchers at the University of Washington demonstrated 
how car hackers who had gained access to the visual recognition 
software within the vehicle could create simple alterations to 
road signs that would cause the car to misread them…” 

The sign stop is misread as speed limit of 45, by adding 
a sticker graffiti “Love/Hate”  

http://www.telegraph.co.uk/technology/2017/08/07/graffiti-road-signs-could-trick-driverless-cars-driving-dangerously/
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Transfer Learning and Backdoors

…
Convolutional Neural 

Network (CNN)

Stop

Parking

Yield

European Road Sign Training

Computation Intensive 
(Days to Weeks for Real problems)

Fine-tune 
network

Pre-trained CNN

US Road Sign Transfer Learning

Computation Intensive 
(Moderate computation minutes to hours)

https://arxiv.org/abs/1708.06733

BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain



Engineering Safe and Resilient CPS
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Exhaustive verification of safety/security properties CPS is intractable:

▪ Openness, environmental change

▪ Uncertainty, spatial distribution

▪ ML components can be fooled

▪ Autonomy and machine ethics 

▪ Classic state-space explosion problem

Some of the open challenges:

▪ Falsification/formal analysis of CPS with machine learning 

components

▪ Runtime verification techniques to online detect attacks

Google Cars

The Wired Magazine


