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JXU

XAl Goals

e Build up trust:
— explain the machine’s decisions
— make the machine’s decisions comprehensible
* Verify and certificate:
— verify decisions
— certificate procedures and evaluations
— robustness (generalization to new situations)
— safety
* Avoid biases:
— input data (ethnic groups, gender, situations)
— output data / teacher / target - human bias, human errors



JXU

XAl Goals

Why did an algorithm recognize an object?

{4

” predicts right for the “wrong” reason: recognizing
* boats by the presence of water

* trains by the presence of rails

* horses by the presence of a copyright watermark

 “Husky” (not “Wolf”) by the presence of snow

* table tennis ball by the presence of a table tennis table

* basket ball by the presence of an indoor sports floor

Generalization is questionable
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JXU

XAl: Correct/ Helpful

Is the explanation

* Explaining procedure gives the same model result

* Explaining procedure can substitute the model

* Explaining procedure leads to the same policies / returns

Does the explanation ?

e Better understandable than the original model

e Uses human concepts

e Less complex (linear, few connections, few nodes)

* Less dependencies: no side effects, no affects on future states



JXU

XAl Methods

Simple surrogate functions to explain the predictions

Testing the response of the model

— Sensitivity analysis = gradient-based (BP through a model)
— Occlusion of inputs (masking out inputs regions)

— Maximal response inputs (inputs that maximize an output)
Contribution analysis uses or analyzes the model on examples

— Layer-wise relevance propagation (LRP)

— Integrated gradient (IG)

— Difference of predictions

Meta-explanation of model behavior

— Analyze learned representations



XAl: Sensitivity Analysis

Sensitivity /o LRP

Sensitivity Analysis: LRP / Taylor Decomposition:

____, "what makes this image “what makes this image

less / more ‘scooter’ ?” ‘scooter’ at all ?”

JXU



JXU

XAl: Contribution Analysis

Contribution analysis: our XAl focus
Contribution gives immediate feedback: easy learning, understandable

Contribution adjusts the expectation of the outcome




JXU

XAl: Credit Assighment

Contribution Analysis = Credit Assighment

Contribution analysis: analyze a machine learning model with respect
to the contributions of inputs to the output.

1. XAI: to explain a model

2. Reinforcement learning: to learn from a model



. . JXU
Credit Assighment

Assigning credit for a received reward to previously performed
actions is one of the central tasks in reinforcement learning.
One of the great challenges is long-term credit assignment:

* delayed rewards

* sparse rewards

e episodic rewards

Episodic rewards:

* Achieving a goal

* Completing a task

* Accomplishing something



JXU

Credit Assighment
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JXU
Reinforcement Learning

Model-free reinforcement learning with strategic decisions:
* logistics

* drug design

* energy

e self-driving cars

e optimization of traffic and smart cities (air pollution)

* environment and climate change
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JXU
Delayed Rewards

Strategic decisions lead to delayed rewards:
* actions cause reward or penalty that is obtained much later
e distracting rewards may be present

e credit assignment problem: what action was responsible



JXU
Delayed Rewards: Problem
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e propagating reward back has exponential decay (



JXU

Our Goal

All future expected reward is zero: it is given immediately

* reward is the change in the expected return
o increase of expected return = positive reward
o decrease of expected return > negative reward

* immediately adjust the return expectation
| - -




. . . J¥U
Reward Redistribution

 complex tasks: hierarchical with sub-tasks or sub-goals
: change in return expectation

080383838 MeC3

example
e getting key 2 increases the probability of obtaining the treasure
e opening door =2 increases the probability of obtaining the treasure



. . . J¥U
Reward Redistribution

a é 5 5 a 5 5 é A é a 5 Learning step functions

fully connected networks
— every state-action
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LSTM or alighnment
- memorizing steps
- much more efficient




. . . J¥U
Reward Redistribution

reward redistribution: give reward when return expectation changes

reward redistributions do not change optimal policies.

GOAL: all future expected reward is zero since already given






. . . J¥U
Reward Redistribution

Steps are identified by LSTM or by alignment model.
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JXU

XAl: Reward Redistribution

Reward redistribution

explains the prediction (what inputs contributed to the prediction)
explains the consequences of actions (what happens in the future)
explains a policy or a strategy (why is an agent better than another)

explains the performance of an agent (why did it achieve the goal)
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