

An Empirical Analysis of Privacy in the Lightning Network

George Kappos¹ Haaroon Yousaf¹ Ania M. Piotrowska^{1,2} Sanket Kanjalkar³

Sergi Delgado-Segura ^{1,5} Andrew Miller ^{3,6} Sarah Meiklejohn ¹

¹ University College London
² Nym Technologies
³ University of Illinois Urbana-Champaign
⁵ PISA Research
⁶ IC3

Evaluating User Privacy in Bitcoin

Elli Androulaki¹, Ghassan O. Karame², Marc Roeschlin¹, Tobias Scherer¹, and Srdjan Capkun¹

A Fistful of Bitcoins: Characterizing Payments Among Men with No Names

Sarah Meiklejohn Marjori Pomarole Grant Jordan Kirill Levchenko Damon McCoy[†] Geoffrey M. Voelker Stefan Savage

University of California, San Diego George Mason University[†]

An Analysis of Anonymity in the Bitcoin System

Fergal Reid Clique Research Cluster University College Dublin, Ireland fergal.reid@gmail.com Martin Harrigan Clique Research Cluster University College Dublin, Ireland martin.harrigan@ucd.ie

Quantitative Analysis of the Full Bitcoin Transaction Graph

Dorit Ron and Adi Shamir

A Traceability Analysis of Monero's Blockchain

April 17, 2017

Amrit Kumar National University of Singapore amrit@comp.nus.edu.sg

Shruti Tople National University of Singapore shruti90@comp.nus.edu.sg Clément Fischer National University of Singapore cfischer@comp.nus.edu.sg

Prateek Saxena National University of Singapore prateeks@comp.nus.edu.sg

An Empirical Analysis of Anonymity in Zcash

George Kappos, Haaroon Yousaf, Mary Maller, and Sarah Meiklejohn University College London {georgios.kappos.16,h.yousaf,mary.maller.15,s.meiklejohn}@ucl.ac.uk

Tracing Transactions Across Cryptocurrency Ledgers

Haaroon Yousaf, George Kappos, and Sarah Meiklejohn University College London {h.yousaf,g.kappos,s.meiklejohn}@ucl.ac.uk

On Scaling Decentralized Blockchains

(A Position Paper)

Kyle Croman^{0,1}, Christian Decker⁴, Ittay Eyal^{0,1}, Adem Efe Gencer^{0,1}, Ari Juels^{0,2}, Ahmed Kosba^{0,3}, Andrew Miller^{0,3}, Prateek Saxena⁶, Elaine Shi^{0,1}, Emin Gün Sirer^{0,1}, Dawn Song^{0,5}, and Roger Wattenhofer⁴

⁰ Initiative for CryptoCurrencies and Contracts (IC3)

¹ Cornell ² Jacobs, Cornell Tech ³ UMD ⁴ ETH ⁵ Berkeley ⁶ NUS

On the Security and Performance of Proof of Work Blockchains

Arthur Gervais ETH Zurich, Switzerland arthur.gervais@inf.ethz.ch

Vasileios Glykantzis ETH Zurich, Switzerland glykantv@student.ethz.ch Ghassan O. Karame NEC Laboratories, Europe ghassan.karame@neclab.eu

Hubert Ritzdorf ETH Zurich, Switzerland hubert.ritzdorf@inf.ethz.ch Karl Wüst ETH Zurich, Switzerland kwuest@student.ethz.ch

Srdjan Čapkun ETH Zurich, Switzerland srdjan.capkun@inf.ethz.ch

The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments

Joseph Poon joseph@lightning.network Thaddeus Dryja rx@awsomnet.org

Off-Chain Commitment Transactions

Off-Chain Commitment Transactions

Blockchain

≜UCI

1. Bob gets hacked by Eve and sends her ransomware

1. Bob gets hacked by Eve and sends her ransomware 2. Eve uses an exchange to monetize her coins

1. Bob gets hacked by Eve and sends her ransomware 2. Eve uses an exchange to monetize her coins

Tracing illicit activities in the Lightning Network

Tracing illicit activities in the Lightning Network

Who is interacting with Eve?

• Channels secrecy

• Third party balance secrecy

• Off-path payment privacy

• On-path relationship anonymity

Channels secrecy

Privacy properties of channels

- Everyone knows
- Known capacity
- Anyone can use it for routing
- User who takes funds is anonymous

- Only participants know
- Hidden capacity
- Only participants/allowed third-parties can use
- User who takes funds is anonymous

Channel secrecy heuristics

Two heuristics (Property & Tracing)

Tracing 27,183 channels 79.3% identified one participant

Property 77,245 closed private channels

1.5	
1 -	
1 -	
ι	
Ι	

Public 155k found opening node 143k found who got closing funds

Third party balance secrecy

Third party balance secrecy

Generic balance inference attack

Generic balance inference attack

Full testnet attack

103 nodes, 1,017 channels

65% of the channels were one-sided

Attacker cost

Off-path payment privacy

Off-Path Payment Privacy

On-path relationship anonymity

On-Path Relationship Anonymity

When does an intermediate node knows who the Sender is

Average Lengths - How long is each path?

lengths_{long}: We maximize the lengths | lengths_{short}: We minimize the lengths

For **lengths**_{long} 14.98% of paths consist of only one hop.

In lengthsshort, 56.65% of paths consisted of a single hop.

On-Path Relationship Anonymity - Results

In the worse case scenario the intermediate now has a 14.98% probability of being right

In the best case scenario, where paths are short, failures happen oftenly and the nodes in a path form a clique the probability is 83% !

- Private channels → Property & Tracing Heuristics
- Third party balance secrecy \rightarrow Balance inference attacks
- Off-path payment privacy \rightarrow Payment detection attack
- On-path relationship anonymity \rightarrow Path discovery attack

THANK YOU

QUESTIONS?

Contact: g.kappos@ucl.ac.uk h.yousaf@ucl.ac.uk